

Lesson 1	
CA.1.a	Define the terms variable, constant, coefficient, function, interval, tangent line, and secant line
CA.1.b	Graph one-dimensional equations containing absolute value expressions
CA.1.c	Graph two-dimensional equations containing absolute value expressions
CA.1.d	Classify graphs based on their equation
CA.1.e	Graph piecewise functions
CA.1.f	Write piecewise functions of given graphs
CA.1.g	Explain continuity by analogy
Lesson 2	
CA.2.a	Graph a line given an equation in x and y
CA.2.b	State the center and radius of a circle given its equation
CA.2.c	State the center and extremities of an ellipse based on its equation
CA.2.d	Graph a circle
CA.2.e	Graph an ellipse
CA.2.f	Plot points and sketch a parabola given its equation
CA.2.g	Plot a point and sketch a hyperbola given its equation
Lesson 3	
CA.3.a	State the general standard form for the equation of a north-south or east-west hyperbola
CA.3.b	Graph a pair of equations when one or both are conic
CA.3.c	Find the solution of a system of linear or conic equations
CA.3.d	Graph conic inequalities
Lesson 4	
CA.4.a	Define the term function
CA.4.b	Model the concept of a function
CA.4.c	State whether a given relation is a function, based on formula or graph
CA.4.d	Calculate the value of a function with various inputs
CA.4.e	State the domain and range of a function
CA.4.f	Explain the distinction between dependent and independent variables
CA.4.g	Rewrite a function in equation form using function notation
CA.4.h	Evaluate the sum or difference of two functions
CA.4.i	Evaluate the product or quotient of two functions
CA.4.j	Evaluate composite functions
CA.4.k	Write the inverse for a given function
CA.4.I	Use the horizontal line test to see if the inverse of a given function is also a function

Objectives List: Calculus

Lesson 5	
CA.5.a	Give the sine, cosine, and tangent for 0° , 30° ,
	45°, 60°, and 90° angles, without a calculator
CA.5.b	Find trigonometric ratios for any angle with a reference angle of 0° , 30° , 45° , 60° , or 90° , without a calculator
CA.5.c	Graph the function $y = sin(x)$
CA.5.d	Graph the function $y = \cos(x)$
CA.5.e	Define period, shift, translation, and amplitude
CA.5.f	Graph variations of the basic sine and cosine graphs
CA.5.g	Determine the equation of a sine or cosine graph
Lesson 6	
CA.6.a	Define natural log as log base e
CA.6.b	State the natural logs of zero and one
CA.6.c	Explain the inverse relationship between e^{\star} and $\ln(\textbf{x})$
CA.6.d	State the rules for $ln(xy)$, $ln(x/y)$, and $ln(x^{a})$
CA.6.e	Simplify expressions using the natural log or exponential function
CA.6.f	Solve equations using natural log or exponential functions
CA.6.g	Sketch the graph of basic natural exponential functions without using a calculator
CA.6.h	Sketch the graph of basic natural log functions without using a calculator
Lesson 7	
CA.7.a	Identify the parts of limit notation
CA.7.b	State the limit of a sum of two functions
CA.7.c	State the limit of a quotient of two functions
CA.7.d	State the limit of two functions
CA.7.e	State the limit of a constant times a function
CA.7.f	State the limit of the product of two functions
CA.7.g	Give the mathematical definition of a limit
Lesson 8	
CA.8.a	Write the notation for infinity
CA.8.b	Give operational definitions of right- and left- handed limits
CA.8.c	Find the limit of a rational expression using any appropriate method
CA.8.d	Evaluate the limit of a function using graphing, substitution, or factoring
CA.8.e	Evaluate the limit of a function using conjugates or trigonometric identities
CA.8.f	Give the location of any vertical asymptotes in the graph of a function
CA.8.g	Give the location of any horizontal asymptotes in the graph of a function
CA.8.h	State three possible reasons for the non- existence of a limit

Objectives List: Calculus

Lesson 9		Lesson 15	
CA.9.a	Define a derivative	CA.15.a	Define local and global minimum and maximum
CA.9.b	Identify a derivative as the slope of a tangent line	CA.15.b	Define the terms maximum, minimum, and extremum
CA.9.c	Calculate the derivative of a function using the	CA.15.c	Use the first derivative to find an extremum
CA.9.d	definition Explain the operation of the greatest integer	CA.15.d	Determine whether an extremum is a maximum or minimum using the first derivative test
CA.9.e	function Describe a step function	CA.15.e	State three places where extrema can exist in a function
1		CA.15.f	List types of critical points
Lesson 10 CA.10.a	State rules for the derivatives of a constant,	CA.15.g	Find critical points in a function
CA.10.a	a variable with respect to itself, the sum of two functions, the product of two functions, a	CA.15.h	Sketch the graph of a function based on its critical points and its first derivative
	constant times a function, a function raised to a power, and the quotient of two functions	CA.15.i	Identify positive-slope and negative-slope intervals on the graph of a function
CA.10.b	Apply derivative rules to find the derivatives	Lesson 16	
	of a constant, a variable with respect to itself, the sum of two functions, the product of	CA.16.a	Give operational definitions for the terms
	two functions, a constant times a function, a		concave up and concave down
	function raised to a power, and the quotient of	CA.16.b	Define inflection point
	two functions	CA.16.c	Define the term concavity
Lesson 11 CA.11.a	State the chain rule	CA.16.d	Identify the concavity of an interval of a function using the second derivative test
CA.11.b	Use the chain rule to differentiate composite functions	CA.16.e	Distinguish between maxima and minima using the second derivative when the second derivative is not equal to zero
CA.11.c	Find the second and higher-order derivatives of functions	CA.16.f	Identify whether critical points are maxima, minima, inflection points, or none of these
CA.11.d	List four situations where functions are not differentiable	CA.16.g	Describe situations where functions will have oblique asymptotes
CA.11.e	Identify non-differentiable sections of functions	CA.16.h	Find the equation for oblique asymptotes in a graph
Lesson 12		1	
CA.12.a	State the derivative of the sine and cosine	Lesson 17	
CA.12.b	functions Differentiate functions containing sine, cosine,	CA.17.a	Give an operational definition for the mean value theorem (MVT)
CA.12.c	tangent, secant, cosecant, or cotangent Differentiate functions by choosing and	CA.17.b	State the necessary conditions for application of the MVT
0/112.0	combining best strategies	CA.17.c	Find a value on an interval which satisfies the MVT
Lesson 13 CA.13.a	State the derivative of e^{x}	CA.17.d	Give an operational definition for Rolle's theorem
CA.13.b	Differentiate functions of the form $e^u dx$, where u is a function of x	CA.17.e	Determine the existence of a root of a polynomial on an interval using Rolle's theorem
CA.13.c	State the derivative of $ln(x)$	CA.17.f	Give an operational definition for
CA.13.d	Differentiate functions of the form $ln(u)$, where u is a function of x	CA.17.g	L'Hôpital's rule State the necessary conditions for application
CA.13.e	Differentiate functions containing e ^{<i>u</i>} and ln(<i>u</i>) expressions	Ū	of L'Hôpital's rule
Lesson 14		CA.17.h	Calculate limits using L'Hôpital's rule
	State the derivative of y with respect to y	CA.17.i	Define even and odd functions
CA.14.a CA.14.b	State the derivative of y with respect to x Differentiate a function implicitly	CA.17.j	State the connection between symmetry and function parity
CA.14.0 CA.14.c	Find the normal line to a function at a given point	CA.17.k	State whether a given function is odd, even, or neither

Objectives	List:	Calculus
------------	-------	----------

Lesson 18		Lesson 22	
CA.18.a	State the first and second derivative of position	CA.22.a	Give an op antiderivati
CA.18.b	Find the velocity and acceleration functions for	CA.22.b	Identify the
	a given position function	CA.22.c	Give the in
CA.18.c	Find the velocity and acceleration at a	CA.22.d	State the s
	particular moment in time, given the position function	CA.22.e	State the p
CA.18.d	Solve word problems involving position, velocity, and acceleration by use of derivatives	CA.22.f	State the ir function
	and algebra	CA.22.g	Apply integ of simple fu
Lesson 19		CA.22.h	Find a func
CA.19.a	Explain the cost function, average cost function, price function, revenue function, and profit function	Lesson 23	the antider
CA.19.b		CA.23.a	Select an a
CA.19.c	Explain the marginal cost function Find the marginal cost function when given the cost function	GA.23.4	used for fir function
CA.19.d	Maximize a revenue function	CA.23.b	Integrate fu
CA.19.e	Find the break-even point given cost and revenue functions	CA.23.c	Introduce c integration
Lesson 20		CA.23.d	Change the integration
CA.20.a	Outline the general procedure for solving optimization problems	Lesson 24	
CA.20.b	Give an operational definition for a constraint equation	CA.24.a	Give an op sums
CA.20.c	Give an operational definition for an optimization equation	CA.24.b	Give an op integral
CA.20.d	Write a constraint equation	CA.24.c	Explain def
CA.20.e	Write an optimization equation	CA.24.d	Write the fo
CA.20.f	Solve optimization problems	CA 24 -	a definite i
Lesson 21		CA.24.e	State the a and lower I
CA.21.a	Give the general procedure for solving related-rates problems	CA.24.f	Simplify an factor befo
CA.21.b	Differentiate between particular information and general information	CA.24.g CA.24.h	Integrate th Explain the
CA.21.c	Write a set of equations for a related-rates problem	CA.24.i	lower limits Explain the
CA.21.d	Differentiate a related-rates equation with respect to time	CA.24.j	vertical bar State the fu
CA.21.e	State the answer(s) to a related-rates word	CA.24.k	Integrate si
	problem	CA.24.I	Find the ar
		CA 24 m	Ctata tha

Lesson ZZ	
CA.22.a	Give an operational definition for an antiderivative
CA.22.b	Identify the integral operator
CA.22.c	Give the integral of zero and one
CA.22.d	State the sum rule for integrals
CA.22.e	State the power rule for integrals
CA.22.f	State the integral rule for a constant times a function
CA.22.g	Apply integration rules to find antiderivatives of simple functions
CA.22.h	Find a function through a given point which is the antiderivative of a given function
Lesson 23	
CA.23.a	Select an appropriate integration formula to be used for finding the antiderivative of a given function
CA.23.b	Integrate functions using substitution
CA.23.c	Introduce quantities as needed to make integration possible
CA.23.d	Change the form of an expression to simplify integration
Lesson 24	
CA.24.a	Give an operational definition for Riemann sums
CA.24.b	Give an operational definition for a definite integral
CA.24.c	Explain definite integral notation
CA.24.d	Write the formula that relates Riemann sums to a definite integral
CA.24.e	State the area under a curve when the upper and lower limit of an integral are equal
CA.24.f	Simplify an integral by moving a constant factor before the integral sign
CA.24.g	Integrate the sum of two functions
CA.24.h	Explain the result of reversing the upper and lower limits on a definite integral
CA.24.i	Explain the meaning and function of the vertical bar (evaluation bar)
CA.24.j	State the fundamental theorem of calculus
CA.24.k	Integrate simple functions
CA.24.I	Find the area between a curve and the <i>x</i> -axis over a defined interval
CA.24.m	State the meaning of area below the <i>x</i> -axis and above a curve
Lesson 25	
CA.25.a	Integrate more moderately complex functions using the rules, formulas, substitution, or simplification

Lesson 26

Lesson 26	
CA.26.a	Find pertinent integral limits in preparation for expressing the area between curves as the sum of definite integrals
CA.26.b	Find the area bounded by two defined curves
CA.26.c	Explain why it is sometimes useful to integrate with respect to y instead of x when finding area
Lesson 27	
CA.27.a	Graph inverse trigonometric functions
CA.27.b	Find the derivative of functions containing inverse trigonometric functions, using applicable rules and strategies
CA.27.c	Find the antiderivative of functions containing inverse trigonometric functions, using applicable rules and strategies
Lesson 28	
CA.28.a	Integrate more complex functions using rules from a table of integrals
CA.28.b	Integrate functions requiring repeated use of reduction formulas
Lesson 29	
CA.29.a	Find general solutions for first-order separable differential equations
CA.29.b	Find particular solutions for first-order separable differential equations
Lesson 30	
CA.30.a	Solve unbounded growth problems using differential equations
CA.30.b	Solve decay problems using differential equations
CA.30.c	Solve cooling problems using differential equations and Newton's Law of Cooling
CA.30.d	Solve continuously-compounding interest problems using differential equations
CA.30.e	Solve motion problems using differential equations