LESSON 6

Supplementary and Complementary Angles

Greek Letters

Adjacent Angles

Angles that share a common side and have the same origin are called *adjacent angles*. They are side by side. In figure 1, α is adjacent to both β and δ . It is not adjacent to γ . In figure 1, there are four pairs of adjacent angles: α and β , β and γ , γ and δ , δ and α .

In figure 2, we added points so we can name the rays that form the angles. The common side shared by adjacent angles α and β is \overrightarrow{VQ} .

Figure 2

Vertical Angles

Notice that $\angle \gamma$ is opposite $\angle \alpha$. Angles that share a common origin and are opposite each other are called *vertical angles*. They have the same measure and are congruent. $\angle \beta$ and $\angle \delta$ are also vertical angles.

Figure 2 (from previous page)

If $m \angle \beta$ is 115°, then $m \angle \delta$ is also 115°. If this is true, then do we have enough information to find $m \angle \alpha$? We know from the information given in figure 2 that \overrightarrow{RT} and \overrightarrow{QS} are lines. Therefore, $\angle RVT$ is a straight angle and has a measure of 180°. If $\angle RVQ (\angle \beta)$ is 115°, then $\angle QVT (\angle \alpha)$ must be 180° - 115°, or 65°. Since $\angle RVS (\angle \gamma)$ is a vertical angle to $\angle QVT$, then it is also 65°.

Supplementary Angles

Two angles such as $\angle \alpha$ and $\angle \beta$ in figure 2, whose measures add up to 180°, or that make a straight angle (straight line), are said to be *supplementary*. In figure 2, the angles were adjacent to each other, but they don't have to be adjacent to be classified as supplementary angles.

Figure 3

GEOMETRY

Complementary Angles

We can observe many relationships in figure 3. Angle 1 is adjacent to both $\angle 6$ and $\angle 2$. Angle 3 and $\angle 6$ are vertical angles, as are $\angle 1$ and $\angle 4$. Angle 6 and $\angle 3$ are also right angles since $\overrightarrow{DF} \perp \overrightarrow{GE}$. The new concept here is the relationship between $\angle DHE$ and $\angle GHF$. Both of these are right angles because the lines are perpendicular; therefore their measures are each 90°. Then $m\angle 1 + m\angle 2 = 90^\circ$, and $m\angle 4 + m\angle 5 = 90^\circ$. Two angles whose measures add up to 90° are called *complementary angles*. Notice that from what we know about vertical angles, $\angle 1$ and $\angle 5$ are also complementary. Let's use some real measures to verify our conclusions.

Figure 4 (a simplified figure 3)

In figure 4, let's assume that $m \angle 1 = 47^\circ$. Then $m \angle 2$ must be 43° , since $m \angle 1$ and $m \angle 2$ add up to 90°. If $m \angle 1 = 47^\circ$, then $m \angle 4$ must also be 47° , since $\angle 1$ and $\angle 4$ are vertical angles. Also, $m \angle 5$ must be 43° . So $\angle 1$ and $\angle 5$ are complementary, as are $\angle 2$ and $\angle 4$. Remember that supplementary and complementary angles do not have to be adjacent to qualify.

It helps me to not get supplementary and complementary angles mixed up if I think of the *s* in straight and the *s* in supplementary. The *c* in complementary may be like the *c* in corner.

GEOMETRY

38 LESSON 6 - SUPPLEMENTARY AND COMPLEMENTARY ANGLES

GEOMETRY