Symbols & Tables

SYMBOLS

- < less than
- > greater than
- ≤ less than or equal to
- ≥ greater than or equal to
- = equal in numerical value
- ≠ not equal
- ≈ approximately equal
- ≅ congruent
- ~ similar
- $\sqrt{}$ square root (radical sign)
- π pi $(\approx 3.14 \text{ or } \approx \frac{22}{7})$
- α alpha
- β beta
- γ gamma
- δ delta

- θ theta
- { } set
- intersection
- ∪ union
- ∅ empty set
- ∞ infinity
- \leftrightarrow line
- \rightarrow ray
- line segment
- arc
- ∠ angle
- m∠ measure of angle
- ⊥ perpendicular
- || parallel
- __ right angle

VOLUME

Measure of inscribed angle =

½ measure of intercepted arc

Perimeter: add the length of each side

Circumference of a circle = $2\pi r$ or πd

Area

- rectangle = bh (or base x height)
- triangle = ½ bh
- square = $bh or s^2$
- parallelogram or rhombus = bh
- trapezoid = $\frac{base_1 + base_2}{2}$ (h)
- circle = πr^2
- ellipse =

(½ short axis)(½ long axis)(π)

Surface Area

- rectangular solid, cube, prism,
- pyramid: add the area of each face
- cylinder: $2(\text{area of base}) + 2\pi rh$
 - or $2\pi r^2 + 2\pi rh$
- sphere: $4\pi r^2$

Volume

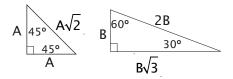
- (B = area of base)
- rectangular solid, prism = Bh
- cylinder = Bh
- pyramid and cone = (1/3)(Bh)
- sphere: $\frac{4}{3} \pi r^3$

© Demme Learning 0616-040519

MISCELLANEOUS

Number of degrees

sum of interior angles of a regular polygon $(N-2) \times 180^{\circ}$ (N=number of sides) sum of interior angles of a quadrilateral: 360° sum of interior angles of a triangle: 180° sum of etxerior angles of a regular polygon: 360°


Measure of central angle = measure of intercepted arc

Pythagorean Theorem

$$\mathsf{L}^2 + \mathsf{L}^2 = \mathsf{H}^2$$

$$\sin^2\theta + \cos^2\theta = 1$$

Special Triangles

Trigonometry functions

$$sine(sin) = \frac{opposite}{hypotenuse}$$

$$cosine(cos) = \frac{adjacent}{hypotenuse}$$

$$tangent(tan) = \frac{opposite}{adjacent}$$

$$cosecant(csc) = \frac{hypotenuse}{opposite}$$

$$secant(sec) = \frac{hypotenuse}{adjacent}$$

$$cotangent(cot) = \frac{adjacent}{opposite}$$