

0

The checkboxes on the right side below may be used to help you record student progress. For example, you can record quarterly grades, or you can indicate level of skill development (not yet begun, beginning, developing, mastered).

Lesson	Number	Objective	~	~	~	~
1	EP.1.a	Use models to represent fractions of whole numbers				
1	EP.1.b	Describe a simple proper fraction using the terms numerator and denominator				
1	EP.1.c	Identify a proper fraction, improper fraction, and mixed number				
1	EP.1.d	Calculate a fraction of a whole number				
2	ΕΡ.2.α	Model a proper fraction using manipulatives				
2	EP.2.b	Identify the fraction represented by a model				
2	EP.2. c	Name the fraction represented in a model using words				
2	EP.2.d	Name the fraction represented in a model using symbols				
3	EP.3. α	Use models to represent two fractions with common denominators				
3	EP.3.b	Represent the sum or difference of two fractions using fraction notation				
3	EP.3. c	Express the sum or difference of two fractions using words				
3	EP.3.d	Add or subtract two fractions with common denominators				
3	EP.3.e	Apply knowledge of adding and subtracting fractions with common denominators to solve word problems				
4	ΕΡ.4.α	Build equivalent fractions using manipulatives				
4	EP.4.b	Express fractions in words				
4	EP.4. c	Add or subtract fractions with common denominators				
4	EP.4.d	Use knowledge of equivalent fractions to solve word problems				
5	EP.5. α	Build models of equivalent fractions to find common denominators				

Math-U-See: Epsilon Objectives List | Page 1

Lesson	Number	Objective	~	~	~	~
5	EP.5.b	Use models to add and subtract fractions with unequal denominators				
5	EP.5.c	Apply knowledge of adding and subtracting fractions to solve word problems				
6, 7	EP.6	Use the "Rule of Four" to add and subtract pairs of proper fractions with unlike denominators				
7	ΕΡ.7.α	Build models of fractions with unequal denominators to find a common denominator				
7	EP.7.b	Describe the relationship of two fractions using >, <, or =				
8	EP.8.a	Use the "Rule of Four" to add multiple proper fractions with unequal denominators				
8	EP.8.b	Add multiple fractions with unlike denominators				
8	EP.8.c	Apply knowledge of equivalent fractions to solve word problems				
9	ΕΡ.9.α	Explain that calculating a fraction of a fraction is equivalent to multiplication of a fraction by a fraction				
9	EP.9.b	Use manipulatives to model multiplication of fractions				
9	EP.9. c	Multiply a fraction by a whole number				
10	EP.10.a	Use the "Rule of Four" to divide pairs of proper fractions with unlike denominators				
10	EP.10.b	Divide a fraction by a fraction				
10	EP.10.c	Apply knowledge of dividing fractions to solve word problems				
11	EP.11.α	Apply rules of divisibility to find common factors for a pair or group of numbers				
11	EP.11.b	Determine the GCF for a number or pair of numbers				
12	EP.12. α	Use models to illustrate simplifying fractions by a common factor				
12	EP.12.b	Determine the GCF to simplify fractions to lowest terms				
12	EP.12. c	Simplify fractions to lowest terms				
13	EP.13. α	Use models to build rectangles to represent prime numbers from 1-24				
13	EP.13.b	Find the prime factors for given values by using a factor tree				
13	EP.13.c	Use prime factorization to simplify fractions				
13	EP.13.d	Explain why prime factorization is an effective method when the GCF is not obvious				
14	ΕΡ.14.α	Use fractional models to illustrate common fractional increments on a customary ruler				

Math-U-See: Epsilon Page 2

Lesson	Number	Objective	~	~	~	~
14	EP.14.b	Demonstrate using a ruler as a practical application for simplifying fractions				
14	EP.14.c	Draw a line of a given fractional length				
14	EP.14.d	Simplify fractional measurements to lowest terms when measuring with a ruler				
15	EP.15.α	Define the terms mixed number, proper fraction, and improper fraction				
15	EP.15.b	Write fractions as mixed numbers, proper fractions, and improper fractions				
15	EP.15.c	Use models to illustrate how to convert a mixed number to an improper fraction and vice versa				
15	EP.15.d	Convert mixed numbers to improper fractions and vice versa				
16	EP.16	Apply knowledge of fractions, mixed numbers, and simplifying fractions to read measurements on a customary ruler				
17	ΕΡ.17.α	Use estimation when adding mixed numbers with common denominators, without regrouping, to determine if the answer is reasonable				
17	EP.17.b	Add and subtract mixed numbers with common denominators				
18	EP.18.a	Build models of mixed numbers with common denominators to illustrate how to add the fractional pieces by converting them to whole-number parts				
18	EP.18.b	Add mixed numbers with common denominators, using regrouping				
18	EP.18.c	Simplify answers to lowest terms when possible				
19	EP.19.a	Use models to demonstrate how to regroup when subtracting mixed numbers				
19	EP.19.b	Subtract mixed numbers with common denominators, using regrouping as necessary				
20	EP.20	Apply the "same difference theorem" to subtract mixed numbers with common denominators				
21	EP.21.a	Add mixed numbers with unlike denominators by using the "Rule of Four" to find a common denominator				
21	EP.21.b	Add fractions with unlike denominators with regrouping				
22	EP.22. α	Subtract mixed numbers with unlike denominators by finding a common denominator with the "Rule of Four"				
22	EP.22.b	Subtract fractions with unlike denominators using the "same difference theorem"				
22	EP.22.c	Subtract fractions with unequal denominators with regrouping				
23	EP.23. α	Define reciprocal				
23	EP.23.b	Explain why multiplying by the reciprocal of a number is the same as dividing by that number				

Math-U-See: Epsilon Page 3

Lesson	Number	Objective	~	~	~	~
23	EP.23.c	Convert mixed numbers to improper fractions before dividing				
23	EP.23.d	Divide fractions by multiplying by the reciprocal				
24	ΕΡ.24.α	Define multiplicative inverse				
24	EP.24.b	Solve for an unknown in an equation by using the multiplicative inverse				
24, 26, 28	EP.24.c	Check work for accuracy by substituting the unknown with the solution				
24	EP.24.d	Apply knowledge of solving equations to solve word problems				
25	EP.25. α	Multiply mixed numbers				
25	EP.25.b	Multiply fractions, simplifying first by finding common factors				
25	EP.25.c	Multiply fractions and simplify the final product by finding common factors				
26	EP.26.a	Solve equations by using the additive inverse to isolate the unknown				
26	EP.26.b	Multiply by the multiplicative inverse to eliminate a coefficient				
27	ΕΡ.27.α	Define circumference of a circle				
27	EP.27.b	Define area of a circle				
27	EP.27.c	Calculate the area of a circle given the diameter or radius				
28	EP.28.a	Use the multiplicative inverse to isolate the unknown when the coefficient is a fraction				
28	EP.28.b	Solve simple equations with fractional coefficients				
29	EP.29.α	Define the terms place value, decimal, expanded notation, and percent				
29	EP.29.b	Use models to illustrate converting a denominator to a power of 10				
29	EP.29.c	Convert fractions to percentages				
29	EP.29.d	Convert decimals to percentages				
30	ΕΡ.30.α	Solve equations with rational numbers				
30	EP.30.b	Use the multiplicative inverse to find the unknown				
Appendix	EP.A.1	Find the area of a trapezoid				

Math-U-See: Epsilon Page 4